Vivere meglio
la sessualità

Home page
Archivio news
Per fortuna non
siamo tutti uguali
Fare sesso e
fare all'amore

1 - 2 - 3

I luoghi comuni:
La scelta del partner (1)

quanti partner (2)
quanti partner (3)
Quanti orgasmi (4)
To have sex or
make love
Voglia di conoscersi,
comunicare
Il bacio
La passione
I Porno vorrebbero
farci credere che...
Il corpo e la
comunicazione
non-verbale
Il corpo
Il desiderio
La seduzione
La gelosia
Il tradimento
Il contatto corporeo
Il piacere
Cosa si può fare
Cosa piace a lei
cosa piace a lui
La trasgressione:
farlo in tre
o più

A cura della Dott.ssa
Giuliana Proietti

La timidezza

La fedeltà

Chi è il Dott.
Antonio Turetta

Chi è la Dott.ssa
Serenella Salomoni

Chi è il Prof. Dott.
Lamberto Coppola

 

 

Sexuality


By Marco Dal Negro

www.mybestlife.com

 

Italiano - English 

 


Women trying to have babies also need to think about circadian clock (10/09/2012)

 

A new Northwestern University study shows that the biological clock is not the only clock women trying to conceive should consider. The circadian clock needs attention, too.

Photo credit NASA

Epidemiological studies have shown female shift workers, such as nurses, and female flight attendants who work on long-distance east-west routes (i.e., those with constant jet lag) have fertility and menstrual issues. They are habitually out of sync with the external light cycle.
But the role circadian rhythm disruption may play in their reproductive problems is a poorly studied area.

Research led by Northwestern circadian rhythm expert Fred W. Turek now draws a clear line between disrupted circadian rhythms and reproductive physiology. Turek and his colleagues are the first to show that if you disrupt the circadian clock environmentally in mice, with repeated changes in their light-dark cycles, there are problems with pregnancy outcomes.

And the effect can be dramatic.
The researchers found evidence suggesting the severity of circadian disruption may be linked to the severity of pregnancy disruption: mice subjected to advances of the light-dark cycle had greater circadian clock disruption and lower reproductive success. This group's pregnancy success rate was only 22 percent.

Fred W. Turek is the Charles E. and Emma H. Morrison Professor of Biology in the Weinberg College of Arts and Sciences and director of Northwestern's Center for Sleep and Circadian Biology.
"If you disrupt your internal rhythms, there will be negative consequences" said Keith Summa, first author of the paper and an M.D./Ph.D. candidate working in Turek's lab. "Our results suggest people should consider their biological rhythms for optimal health."

Turek, Summa and their colleague and co-author Martha H. Vitaterna studied three sets of normal laboratory female mice, all who had recently mated. The study was conducted over the course of 21 days, the duration of a typical pregnancy.

One set was a control group of 12 mice that experienced normal days of 12 hours of light, followed by 12 hours of darkness.

The two other groups, of 18 mice each, also experienced days of 12 hours of light and 12 hours of darkness.
But the phase-advanced group had its 12 hours of light start six hours earlier every five days.
The phase-delayed group had its light start six hours later every five days. (There were a total of four phase shifts over the duration of the study.)

The researchers monitored the mice throughout the gestation period to count the number of full-term pregnancies. The results surprised them.

In the control mice, 90 percent of the matings led to full-term pregnancies. But in the phase-delay group, the pregnancy success rate was 50 percent, while in the phase-advanced group, it was only 22 percent.

"We were surprised at how dramatic the effect of manipulating the light-dark cycle was, especially in the phase-advanced group," Summa said. "We expected a negative effect from the circadian clock disruption, but not this much."

They next looked at a separate group of females in the phase-delay and phase-advance protocol to see how the animals responded to the repeated phase shifts. The researchers found the phase-advanced animals required one to two days longer, on average, to return to normal rhythms. This suggests the magnitude of circadian disruption is associated with the severity of pregnancy loss.

The next steps, the researchers say, are to identify specifically the stage at which pregnancy is affected and to understand exactly how circadian disruption results in the observed adverse effects.

"We've made an interesting observation, but what's causing the reduced fertility?" Summa said. "We would like to determine where exactly the phase shifts and internal rhythm disruptions are having an effect."

For more inofrmations
The study "Environmental Perturbation of the Circadian Clock Disrupts Pregnancy in the Mouse."
http://dx.plos.org/10.1371/journal.pone.0037668.

(MDN)

 


Home di mybestlife.com - Salute - Sessualità - Gola - Depressione - I consigli del nonno - Musica - Grafologia - Ambiente - Per saperne di più - Viaggi: tutto in una pagina - Meteo - Ridere - Mix

Cerca nel sito

Chi siamo e come contattarci

Copyright © 1998/2018 mybestlife.com tutti i diritti sono riservati eccetto quelli già di altri proprietari.

 

 

 

 


 

[_private/root_princ/juiceadv300x250.htm]

 

[_private/root_princ/juiceadv300x250.htm]


-

[_private/root_princ/juiceadv_overlay.htm]